
Parallel programming in Chapel

ALEX RAZOUMOV
alex.razoumov@westdri.ca

2022 edition 1 / 17

Why another language? https://chapel-lang.org
High-level parallel programming language

I “Python for parallel programming”
I much easier to use and learn than MPI; few lines of Chapel typically replace tens of

lines of MPI code
I abstractions for data distribution/parallelism, task parallelism
I optimization for data-driven placement of subcomputations
I granular (“multi-resolution”) design: can bring closer to machine level if needed
I everything you can do in MPI (and OpenMP!), you should be able to do in Chapel

Shared- and distributed-memory parallelism built in

Focus on performance

I compiled language; simple Chapel codes perform as well as optimized
C/C++/Fortran code

I reportedly, very complex Chapel codes run at ∼70% performance of a similar
well-tuned MPI code (not bad, but room to improve)

Perfect language for learning parallel programming for beginners

Open-source: can compile on any Unix-like platform
I precompiled for MacOS (single-locale via Homebrew)
I Docker image http://dockr.ly/2vJbi06 (simulates a multi-locale environment)

2022 edition 2 / 17

https://chapel-lang.org
http://dockr.ly/2vJbi06

Cedar (OmniPath) / Graham (InfiniBand) /Béluga (InfiniBand)
I https://docs.computecanada.ca/wiki/Chapel

$ source /home/razoumov/startSingleLocale.sh
$ chpl --version

$ source /home/razoumov/startMultiLocale.sh
$ chpl --version

Fairly small community at the moment:
too few people know/use Chapel ⇐⇒ relatively few libraries

You can use functions/libraries written in other languages, e.g. in C
(1) direct calls will always be serial

(2) high-level Chapel parallel libraries can use C/F90/etc libraries underneath

2022 edition 3 / 17

https://docs.computecanada.ca/wiki/Chapel

Useful links

Slides from https://chapel-lang.org
I Data parallelism
I Task parallelism
I Locality / Affinity Features
I Domain Maps / Distributions

Watch Chapel: Productive, Multiresolution Parallel Programming talk by
Brad Chamberlain

Getting started guide for Python programmers

https://learnxinyminutes.com/docs/chapel

Concise Chapel tutorial by David Bunde

Documentation and examples for various Chapel modules in
$CHPL_HOME/modules/, e.g., standard/ or dists/

https://stackoverflow.com/questions/tagged/chapel

2022 edition 4 / 17

https://chapel-lang.org
http://chapel.cray.com/tutorials/ACCU2017/03-DataPar.pdf
https://chapel-lang.org/tutorials/ACCU2017/04-TaskPar.pdf
https://chapel-lang.org/tutorials/ACCU2017/05-Locality.pdf
https://chapel-lang.org/tutorials/ACCU2017/06-DomainMaps.pdf
https://youtu.be/0DjIdRJIqRY
http://chapel-for-python-programmers.readthedocs.io/basics.html
https://learnxinyminutes.com/docs/chapel
http://faculty.knox.edu/dbunde/teaching/chapel/tutorial-1.9.html
https://stackoverflow.com/questions/tagged/chapel

Our workshop

PART 1: BASIC
LANGUAGE FEATURES

running single-locale
Chapel codes on Cedar

I interactive jobs vs.
batch jobs

quicky on running
Chapel on your laptop

problem description:
heat transfer equation

variables

ranges and arrays

conditionals

for loops

config variables

timing code execution

PART 2: TASK
PARALLELISM

parallel concepts
I concurrency vs. true

parallelism
I concurrency vs.

task locality

fire-and-forget tasks
I begin statement
I cobegin statement
I coforall loops
I forall loops

task synchronization
I sync statement
I sync variables
I atomic variables

task-parallelizing the
heat transfer solver (if
we have time)

PART 3: DATA
PARALLELISM

single-locale data
parallelism

I forall statement

parallelizing the Julia
set problem

running multi-locale
Chapel codes on Cedar

simple multi-locale
codes

local domains and
distributed domains

heat transfer solver on
distributed domains

periodic boundary
conditions

writing to files

2022 edition 5 / 17

Numerical problem: 2D heat transfer equation

Imagine a metallic plate initially at 25 degrees

Simple 2D heat (diffusion) equation

∂T(x, y, t)
∂t

=
∂2T
∂x2 +

∂2T
∂y2

Discretize the solution T(x, y, t) ≈ T(n)
i,j with i = 1, ..., rows and j = 1, ..., cols

I upper left corner is (1,1), lower right corner is (rows,cols)

Initial condition: T(0)
i,j = 25

Boundary condition: upper side T(n)
0,1..cols ≡ 0, left side T(n)

1..rows,0 ≡ 0,

bottom side T(n)
rows+1,1..cols = 80 · j/cols, right side T(n)

1..rows,cols+1 = 80 · i/rows
(linearly increasing from 0 to 80 degrees)

Discretize the equation with forward Euler time stepping

T(n+1)
i,j − T(n)

i,j

∆t
=

T(n)
i+1,j − 2T(n)

i,j + T(n)
i−1,j

(∆x)2 +
T(n)

i,j+1 − 2T(n)
i,j + T(n)

i,j−1

(∆y)2

2022 edition 6 / 17

Numerical problem: 2D heat transfer equation (cont.)

For simplicity assume ∆x = ∆y = 1

Use ∆t = 1/4

The finite difference equation becomes

T(n+1)
i,j =

1
4

[
T(n)

i+1,j + T(n)
i−1,j + T(n)

i,j+1 + T(n)
i,j−1

]
The objective is to find Ti,j after a certain number of iterations, or when
the system is in steady state

Can increase the number of points in the grid to illustrate the advantage
of parallelism

2022 edition 7 / 17

Serial exercise: using procedures and control flow
Look up Chapel procedures

Write a Chapel code to find the root of the equation
x5 + 8x3 − 2x2 + 5x− 1.2 = 0 using the bisection method in the interval [-1,1]

Calculate the function at the
ends and the midpoint of the
interval

Depending on the signs of the
three computed values, let the
midpoint be either the new
left or the new right end

Repeat until your error is
below ∆x = 10−8

2022 edition 8 / 17

Parallelism vs. TASK LOCALITY

serial local

parallel local parallel distributed

parallelism

locality

Consider a set of tasks
 that we want to run

single core
several cores
 single node

 many cores
multiple nodes

Also DATA LOCALITY:

each of these tasks

could be using variables

 - in local memory or

 - in memory on other

 compute nodes

s
e
ri
a
l

p
a
ra
lle
l

2022 edition 9 / 17

Task- vs. data-parallel

config var numtasks = 2;

coforall taskid in 1..numtasks do

 writeln("this is task ", taskid);

var A, B, C: [1..1000] real;

forall (a,b,c) in zip(A,B,C) do

 c = a + b;

forall loc in Locales do

 on loc do

 writeln("this locale is named ", here.name);

use BlockDist;

const mesh = {1..100,1..100} dmapped

 Block(boundingBox={1..100,1..100});

var T: [mesh] real;

forall (i,j) in T.domain do

 T[i,j] = i + j;

task parallel

data parallel

single locale
shared memory parallelism

multiple locales
distributed memory parallelism

+ likely shared memory parallelism

2022 edition 10 / 17

Array decomposition

2022 edition 11 / 17

Race condition
lock.add(1)

lock.waitFor(2)

"task 1 is done"

lock.sub(1)

lock.waitFor(0)

lock.add(1)

lock.waitFor(2)

Note: lock.waitFor() is not a collective operation

2022 edition 12 / 17

Data-parallel exercise: compute π with forall loop

Write a parallel Chapel code to compute π by calculating the integral

numerically through summation

π =

∫ 1

0

4 dx
1 + x2

2022 edition 13 / 17

Parallelism cheatsheet
for is a serial loop; a..#n means n iterations, a..b means b-a+1 iterations
forall loop is executed cooperatively by all local cores in parallel, or by remote locales
that own the corresponding indices/elements (subdividing their local iterations among
their local cores); number of threads scales to the number of available cores
coforall loop creates a new task per each iteration (cycling through locales or tasks inside
a locale)
begin { ... } spins statements inside off into a new task
sync { ... } pauses until the children have synced back up
cobegin { line1 line2 line3 } runs each line in a new task; can be grouped with {}
Built-in variables and arrays

I numLocales is the number of locales
I Locales stores an array of compute nodes on which the program is executing
I locale.id is the ID of the current locale
I locale.maxTaskPar is the runtime maximum number of tasks on the current local
I locale.numCores is the locale’s number of compute cores
I locale.name is a locale’s name
I here evaluates to the locale on which the current task is running

Distributions
I BlockDist partitions indices into blocks according to a boundingBox domain and maps each block

onto a separate locale
I CyclicDist maps indices to locales in a round-robin pattern starting at a given index
I BlockCycDist, DimensionalDist2D, PrivateDist, ReplicatedDist, StencilDist,

BlockCycDim, BlockDim, ReplicatedDim

2022 edition 14 / 17

Distributed domains

2022 edition 15 / 17

Unstructured data

In addition to rectangular domains and arrays, Chapel supports less
structured (and more dynamic) data

Sparse domains and arrays: can be mapped to locales

Associative domains and arrays: can be mapped to locales as of v1.19
- associated domains are similar to Python’s sets (unordered, unique indices)

- associated domains with arrays on top are similar to Python’s dictionaries

- HashedDist supports custom index mapping to locales

Opaque domains and arrays: distribution across locales currently not
implemented

2022 edition 16 / 17

WestDRI Chapel webinars
https://westgrid.github.io/trainingMaterials/programming

Three-part “INTRO TO PARALLEL PROGRAMMING IN CHAPEL”

“WORKING WITH DISTRIBUTED UNSTRUCTURED DATA IN CHAPEL”

“WORKING WITH DATA FILES AND EXTERNAL C LIBRARIES IN CHAPEL”

2022 edition 17 / 17

https://westgrid.github.io/trainingMaterials/programming

